(-4z+7)+(3z^2-3z-8)=

Simple and best practice solution for (-4z+7)+(3z^2-3z-8)= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (-4z+7)+(3z^2-3z-8)= equation:


Simplifying
(-4z + 7) + (3z2 + -3z + -8) = 0

Reorder the terms:
(7 + -4z) + (3z2 + -3z + -8) = 0

Remove parenthesis around (7 + -4z)
7 + -4z + (3z2 + -3z + -8) = 0

Reorder the terms:
7 + -4z + (-8 + -3z + 3z2) = 0

Remove parenthesis around (-8 + -3z + 3z2)
7 + -4z + -8 + -3z + 3z2 = 0

Reorder the terms:
7 + -8 + -4z + -3z + 3z2 = 0

Combine like terms: 7 + -8 = -1
-1 + -4z + -3z + 3z2 = 0

Combine like terms: -4z + -3z = -7z
-1 + -7z + 3z2 = 0

Solving
-1 + -7z + 3z2 = 0

Solving for variable 'z'.

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
-0.3333333333 + -2.333333333z + z2 = 0

Move the constant term to the right:

Add '0.3333333333' to each side of the equation.
-0.3333333333 + -2.333333333z + 0.3333333333 + z2 = 0 + 0.3333333333

Reorder the terms:
-0.3333333333 + 0.3333333333 + -2.333333333z + z2 = 0 + 0.3333333333

Combine like terms: -0.3333333333 + 0.3333333333 = 0.0000000000
0.0000000000 + -2.333333333z + z2 = 0 + 0.3333333333
-2.333333333z + z2 = 0 + 0.3333333333

Combine like terms: 0 + 0.3333333333 = 0.3333333333
-2.333333333z + z2 = 0.3333333333

The z term is -2.333333333z.  Take half its coefficient (-1.166666667).
Square it (1.361111112) and add it to both sides.

Add '1.361111112' to each side of the equation.
-2.333333333z + 1.361111112 + z2 = 0.3333333333 + 1.361111112

Reorder the terms:
1.361111112 + -2.333333333z + z2 = 0.3333333333 + 1.361111112

Combine like terms: 0.3333333333 + 1.361111112 = 1.6944444453
1.361111112 + -2.333333333z + z2 = 1.6944444453

Factor a perfect square on the left side:
(z + -1.166666667)(z + -1.166666667) = 1.6944444453

Calculate the square root of the right side: 1.30170828

Break this problem into two subproblems by setting 
(z + -1.166666667) equal to 1.30170828 and -1.30170828.

Subproblem 1

z + -1.166666667 = 1.30170828 Simplifying z + -1.166666667 = 1.30170828 Reorder the terms: -1.166666667 + z = 1.30170828 Solving -1.166666667 + z = 1.30170828 Solving for variable 'z'. Move all terms containing z to the left, all other terms to the right. Add '1.166666667' to each side of the equation. -1.166666667 + 1.166666667 + z = 1.30170828 + 1.166666667 Combine like terms: -1.166666667 + 1.166666667 = 0.000000000 0.000000000 + z = 1.30170828 + 1.166666667 z = 1.30170828 + 1.166666667 Combine like terms: 1.30170828 + 1.166666667 = 2.468374947 z = 2.468374947 Simplifying z = 2.468374947

Subproblem 2

z + -1.166666667 = -1.30170828 Simplifying z + -1.166666667 = -1.30170828 Reorder the terms: -1.166666667 + z = -1.30170828 Solving -1.166666667 + z = -1.30170828 Solving for variable 'z'. Move all terms containing z to the left, all other terms to the right. Add '1.166666667' to each side of the equation. -1.166666667 + 1.166666667 + z = -1.30170828 + 1.166666667 Combine like terms: -1.166666667 + 1.166666667 = 0.000000000 0.000000000 + z = -1.30170828 + 1.166666667 z = -1.30170828 + 1.166666667 Combine like terms: -1.30170828 + 1.166666667 = -0.135041613 z = -0.135041613 Simplifying z = -0.135041613

Solution

The solution to the problem is based on the solutions from the subproblems. z = {2.468374947, -0.135041613}

See similar equations:

| 6x+3-1/3=8x-34-1/2 | | 3n=6+5+9+7 | | x+x+13=171 | | x+x+13=q | | (-3)*1.2= | | 25*5(2+3)= | | 6x+3-1/3=8x-34-1/2-3+1/3 | | 6x+6x-2=36+4x | | lnx^2=5 | | 15v-2v+29+5v-27= | | 3x+8=26+x | | 3(v+2)+v=4(v-1) | | -7(-5+30)=7(n-7) | | m/9.(-1)=-2 | | 5-3(x+2)=7-x | | 825/25 | | 2/3x8/4 | | 0.18/0.4 | | 17y=153 | | (2v+3y-3)(4v-5y)= | | x^2-5x-7= | | -1-5(6)=-21 | | -9(-1)-5(6)=-29 | | -4y/-1y | | 2y/-2y | | -9(-8)5(2)=-21 | | -8-5(2)=-29 | | 4.5x-4=3.5x | | -9(4)-5(5)=-21 | | 6x+3+2x=6x+17+x | | y^2+47=14y | | x^2+5xy+4y^2= |

Equations solver categories